Wednesday, March 14, 2007

The Internet

What Is The Internet (And What Makes It Work) - December, 1999
By Robert E. Kahn and Vinton G. Cerf

This paper was prepared by the authors at the request of the Internet Policy Institute (IPI), a non-profit organization based in Washington, D.C., for inclusion in their upcoming series of Internet related papers. It is a condensation of a longer paper in preparation by the authors on the same subject. Many topics of potential interest were not included in this condensed version because of size and subject matter constraints. Nevertheless, the reader should get a basic idea of the Internet, how it came to be, and perhaps even how to begin thinking about it from an architectural perspective. This will be especially important to policy makers who need to distinguish the Internet as a global information system apart from its underlying communications infrastructure.

INTRODUCTION

As we approach a new millennium, the Internet is revolutionizing our society, our economy and our technological systems. No one knows for certain how far, or in what direction, the Internet will evolve. But no one should underestimate its importance.

Over the past century and a half, important technological developments have created a global environment that is drawing the people of the world closer and closer together. During the industrial revolution, we learned to put motors to work to magnify human and animal muscle power. In the new Information Age, we are learning to magnify brainpower by putting the power of computation wherever we need it, and to provide information services on a global basis. Computer resources are infinitely flexible tools; networked together, they allow us to generate, exchange, share and manipulate information in an uncountable number of ways. The Internet, as an integrating force, has melded the technology of communications and computing to provide instant connectivity and global information services to all its users at very low cost.

Ten years ago, most of the world knew little or nothing about the Internet. It was the private enclave of computer scientists and researchers who used it to interact with colleagues in their respective disciplines. Today, the Internet’s magnitude is thousands of times what it was only a decade ago. It is estimated that about 60 million host computers on the Internet today serve about 200 million users in over 200 countries and territories. Today’s telephone system is still much larger: about 3 billion people around the world now talk on almost 950 million telephone lines (about 250 million of which are actually radio-based cell phones). But by the end of the year 2000, the authors estimate there will be at least 300 million Internet users. Also, the total numbers of host computers and users have been growing at about 33% every six months since 1988 – or roughly 80% per year. The telephone service, in comparison, grows an average of about 5-10% per year. That means if the Internet keeps growing steadily the way it has been growing over the past few years, it will be nearly as big as today’s telephone system by about 2006.

top

THE EVOLUTION OF THE INTERNET

The underpinnings of the Internet are formed by the global interconnection of hundreds of thousands of otherwise independent computers, communications entities and information systems. What makes this interconnection possible is the use of a set of communication standards, procedures and formats in common among the networks and the various devices and computational facilities connected to them. The procedures by which computers communicate with each other are called "protocols." While this infrastructure is steadily evolving to include new capabilities, the protocols initially used by the Internet are called the "TCP/IP" protocols, named after the two protocols that formed the principal basis for Internet operation.

On top of this infrastructure is an emerging set of architectural concepts and data structures for heterogeneous information systems that renders the Internet a truly global information system. In essence, the Internet is an architecture, although many people confuse it with its implementation. When the Internet is looked at as an architecture, it manifests two different abstractions. One abstraction deals with communications connectivity, packet delivery and a variety of end-end communication services. The other abstraction deals with the Internet as an information system, independent of its underlying communications infrastructure, which allows creation, storage and access to a wide range of information resources, including digital objects and related services at various levels of abstraction.

Interconnecting computers is an inherently digital problem. Computers process and exchange digital information, meaning that they use a discrete mathematical “binary” or “two-valued” language of 1s and 0s. For communication purposes, such information is mapped into continuous electrical or optical waveforms. The use of digital signaling allows accurate regeneration and reliable recovery of the underlying bits. We use the terms “computer,” “computer resources” and “computation” to mean not only traditional computers, but also devices that can be controlled digitally over a network, information resources such as mobile programs and other computational capabilities.

The telephone network started out with operators who manually connected telephones to each other through “patch panels” that accepted patch cords from each telephone line and electrically connected them to one another through the panel, which operated, in effect, like a switch. The result was called circuit switching, since at its conclusion, an electrical circuit was made between the calling telephone and the called telephone. Conventional circuit switching, which was developed to handle telephone calls, is inappropriate for connecting computers because it makes limited use of the telecommunication facilities and takes too long to set up connections. Although reliable enough for voice communication, the circuit-switched voice network had difficulty delivering digital information without errors.

For digital communications, packet switching is a better choice, because it is far better suited to the typically "burst" communication style of computers. Computers that communicate typically send out brief but intense bursts of data, then remain silent for a while before sending out the next burst. These bursts are communicated as packets, which are very much like electronic postcards. The postcards, in reality packets, are relayed from computer to computer until they reach their destination. The special computers that perform this forwarding function are called variously "packet switches" or "routers" and form the equivalent of many bucket brigades spanning continents and oceans, moving buckets of electronic postcards from one computer to another. Together these routers and the communication links between them form the underpinnings of the Internet.

Without packet switching, the Internet would not exist as we now know it. Going back to the postcard analogy, postcards can get lost. They can be delivered out of order, and they can be delayed by varying amounts. The same is true of Internet packets, which, on the Internet, can even be duplicated. The Internet Protocol is the postcard layer of the Internet. The next higher layer of protocol, TCP, takes care of re-sending the “postcards” to recover packets that might have been lost, and putting packets back in order if they have become disordered in transit.

Of course, packet switching is about a billion times faster than the postal service or a bucket brigade would be. It also has to operate over many different communications systems, or substrata. The authors designed the basic architecture to be so simple and undemanding that it could work with most communication services. Many organizations, including commercial ones, carried out research using the TCP/IP protocols in the 1970s. Email was steadily used over the nascent Internet during that time and to the present. It was not until 1994 that the general public began to be aware of the Internet by way of the World Wide Web application, particularly after Netscape Communications was formed and released its browser and associated server software.

Thus, the evolution of the Internet was based on two technologies and a research dream. The technologies were packet switching and computer technology, which, in turn, drew upon the underlying technologies of digital communications and semiconductors. The research dream was to share information and computational resources. But that is simply the technical side of the story. Equally important in many ways were the other dimensions that enabled the Internet to come into existence and flourish. This aspect of the story starts with cooperation and far-sightedness in the U.S. Government, which is often derided for lack of foresight but is a real hero in this story.

It leads on to the enthusiasm of private sector interests to build upon the government funded developments to expand the Internet and make it available to the general public. Perhaps most important, it is fueled by the development of the personal computer industry and significant changes in the telecommunications industry in the 1980s, not the least of which was the decision to open the long distance market to competition. The role of workstations, the Unix operating system and local area networking (especially the Ethernet) are themes contributing to the spread of Internet technology in the 1980s into the research and academic community from which the Internet industry eventually emerged.

Many individuals have been involved in the development and evolution of the Internet covering a span of almost four decades if one goes back to the early writings on the subject of computer networking by Kleinrock [i], Licklider [ii], Baran [iii], Roberts [iv], and Davies [v]. The ARPANET, described below, was the first wide-area computer network. The NSFNET, which followed more than a decade later under the leadership of Erich Bloch, Gordon Bell, Bill Wulf and Steve Wolff, brought computer networking into the mainstream of the research and education communities. It is not our intent here to attempt to attribute credit to all those whose contributions were central to this story, although we mention a few of the key players. A readable summary on the history of the Internet, written by many of the key players, may be found at www.isoc.org/internet/history. [vi]

From One Network to Many: The role of DARPA

Modern computer networking technologies emerged in the early 1970s. In 1969, The U.S. Defense Advanced Research Projects Agency (variously called ARPA and DARPA), an agency within the Department of Defense, commissioned a wide-area computer network called the ARPANET. This network made use of the new packet switching concepts for interconnecting computers and initially linked computers at universities and other research institutions in the United States and in selected NATO countries. At that time, the ARPANET was essentially the only realistic wide-area computer network in existence, with a base of several dozen organizations, perhaps twice that number of computers and numerous researchers at those sites. The program was led at DARPA by Larry Roberts. The packet switches were built by Bolt Beranek and Newman (BBN), a DARPA contractor. Others directly involved in the ARPANET activity included the authors, Len Kleinrock, Frank Heart, Howard Frank, Steve Crocker, Jon Postel and many many others in the ARPA research community.

Back then, the methods of internetworking (that is interconnecting computer networks) were primitive or non-existent. Two organizations could interwork technically by agreeing to use common equipment, but not every organization was interested in this approach. Absent that, there was jury-rigging, special case development and not much else. Each of these networks stood on its own with essentially no interaction between them – a far cry from today’s Internet.

In the early 1970s, ARPA began to explore two alternative applications of packet switching technology based on the use of synchronous satellites (SATNET) and ground-based packet radio (PRNET). The decision by Kahn to link these two networks and the ARPANET as separate and independent networks resulted in the creation of the Internet program and the subsequent collaboration with Cerf. These two systems differed in significant ways from the ARPANET so as to take advantage of the broadcast and wireless aspects of radio communications. The strategy that had been adopted for SATNET originally was to embed the SATNET software into an ARPANET packet switch, and interwork the two networks through memory-to-memory transfers within the packet switch. This approach, in place at the time, was to make SATNET an “embedded” network within the ARPANET; users of the network would not even need to know of its existence. The technical team at Bolt Beranek and Newman (BBN), having built the ARPANET switches and now building the SATNET software, could easily produce the necessary patches to glue the programs together in the same machine. Indeed, this is what they were under contract with DARPA to provide. By embedding each new network into the ARPANET, a seamless internetworked capability was possible, but with no realistic possibility of unleashing the entrepreneurial networking spirit that has manifest itself in modern day Internet developments. A new approach was in order.

The Packet Radio (PRNET) program had not yet gotten underway so there was ample opportunity to change the approach there. In addition, up until then, the SATNET program was only an equipment development activity. No commitments had been obtained for the use of actual satellites or ground stations to access them. Indeed, since there was no domestic satellite industry in the U.S. then, the only two viable alternatives were the use of Intelsat or U.S. military satellites. The time for a change in strategy, if it was to be made, was then.

top

THE INTERNET ARCHITECTURE

The authors created an architecture for interconnecting independent networks that could then be federated into a seamless whole without changing any of the underlying networks. This was the genesis of the Internet as we know it today.

In order to work properly, the architecture required a global addressing mechanism (or Internet address) to enable computers on any network to reference and communicate with computers on any other network in the federation. Internet addresses fill essentially the same role as telephone numbers do in telephone networks. The design of the Internet assumed first that the individual networks could not be changed to accommodate new architectural requirements; but this was largely a pragmatic assumption to facilitate progress. The networks also had varying degrees of reliability and speed. Host computers would have to be able to put disordered packets back into the correct order and discard duplicate packets that had been generated along the way. This was a major change from the virtual circuit-like service provided by ARPANET and by then contemporary commercial data networking services such as Tymnet and Telenet. In these networks, the underlying network took responsibility for keeping all information in order and for re-sending any data that might have been lost. The Internet design made the computers responsible for tending to these network problems.

A key architectural construct was the introduction of gateways (now called routers) between the networks to handle the disparities such as different data rates, packet sizes, error conditions, and interface specifications. The gateways would also check the destination Internet addresses of each packet to determine the gateway to which it should be forwarded. These functions would be combined with certain end-end functions to produce the reliable communication from source to destination. A draft paper by the authors describing this approach was given at a meeting of the International Network Working Group in 1973 in Sussex, England and the final paper was subsequently published by the Institute for Electrical and Electronics Engineers, the leading professional society for the electrical engineering profession, in its Transactions on Communications in May, 1974 [vii]. The paper described the TCP/IP protocol.

DARPA contracted with Cerf's group at Stanford to carry out the initial detailed design of the TCP software and, shortly thereafter, with BBN and University College London to build independent implementations of the TCP protocol (as it was then called – it was later split into TCP and IP) for different machines. BBN also had a contract to build a prototype version of the gateway. These three sites collaborated in the development and testing of the initial protocols on different machines. Cerf, then a professor at Stanford, provided the day-to-day leadership in the initial TCP software design and testing. BBN deployed the gateways between the ARPANET and the PRNET and also with SATNET. During this period, under Kahn's overall leadership at DARPA, the initial feasibility of the Internet Architecture was demonstrated.

The TCP/IP protocol suite was developed and refined over a period of four more years and, in 1980, it was adopted as a standard by the U.S. Department of Defense. On January 1, 1983 the ARPANET converted to TCP/IP as its standard host protocol. Gateways (or routers) were used to pass packets to and from host computers on “local area networks.” Refinement and extension of these protocols and many others associated with them continues to this day by way of the Internet Engineering Task Force [viii].

top

GOVERNMENT’S HISTORICAL ROLE

Other political and social dimensions that enabled the Internet to come into existence and flourish are just as important as the technology upon which it is based. The federal government played a large role in creating the Internet, as did the private sector interests that made it available to the general public. The development of the personal computer industry and significant changes in the telecommunications industry also contributed to the Internet’s growth in the 1980s. In particular, the development of workstations, the Unix operating system, and local area networking (especially the Ethernet) contributed to the spread of the Internet within the research community from which the Internet industry eventually emerged.

The National Science Foundation and others

In the late 1970s, the National Science Foundation (NSF) became interested in the impact of the ARPANET on computer science and engineering. NSF funded the Computer Science Network (CSNET), which was a logical design for interconnecting universities that were already on the ARPANET and those that were not. Telenet was used for sites not connected directly to the ARPANET and a gateway was provided to link the two. Independent of NSF, another initiative called BITNET ("Because it's there" Net) [ix] provided campus computers with email connections to the growing ARPANET. Finally, AT&T Bell Laboratories development of the Unix operating system led to the creation of a grass-roots network called USENET [x], which rapidly became home to thousands of “newsgroups” where Internet users discussed everything from aerobics to politics and zoology.

In the mid 1980s, NSF decided to build a network called NSFNET to provide better computer connections for the science and education communities. The NSFNET made possible the involvement of a large segment of the education and research community in the use of high speed networks. A consortium consisting of MERIT (a University of Michigan non-profit network services organization), IBM and MCI Communications won a 1987 competition for the contract to handle the network’s construction. Within two years, the newly expanded NSFNET had become the primary backbone component of the Internet, augmenting the ARPANET until it was decommissioned in 1990.At about the same time, other parts of the U.S. government had moved ahead to build and deploy networks of their own, including NASA and the Department of Energy. While these groups originally adopted independent approaches for their networks, they eventually decided to support the use of TCP/IP.

The developers of the NSFNET, led by Steve Wolff who had the direct responsibility for the NSFNET program, also decided to create intermediate level networks to serve research and education institutions and, more importantly, to allow networks that were not commissioned by the U.S. government to connect to the NSFNET. This strategy reduced the overall load on the backbone network operators and spawned a new industry: Internet Service Provision. Nearly a dozen intermediate level networks were created, most with NSF support, [xi] some, such as UUNET, with Defense support, and some without any government support. The NSF contribution to the evolution of the Internet was essential in two respects. It opened the Internet to many new users and, drawing on the properties of TCP/IP, structured it so as to allow many more network service providers to participate.

For a long time, the federal government did not allow organizations to connect to the Internet to carry out commercial activities. By 1988, it was becoming apparent, however, that the Internet's growth and use in the business sector might be seriously inhibited by this restriction. That year, CNRI requested permission from the Federal Networking Council to interconnect the commercial MCI Mail electronic mail system to the Internet as part of a general electronic mail interconnection experiment. Permission was given and the interconnection was completed by CNRI, under Cerf’s direction, in the summer of 1989. Shortly thereafter, two of the then non-profit Internet Service Providers (UUNET [xii] and NYSERNET) produced new for-profit companies (UUNET and PSINET [xiii] respectively). In 1991, they were interconnected with each other and CERFNET [xiv]. Commercial pressure to alleviate restrictions on interconnections with the NSFNET began to mount.

In response, Congress passed legislation allowing NSF to open the NSFNET to commercial usage. Shortly thereafter, NSF determined that its support for NSFNET might not be required in the longer term and, in April 1995, NSF ceased its support for the NSFNET. By that time, many commercial networks were in operation and provided alternatives to NSFNET for national level network services. Today, approximately 10,000 Internet Service Providers (ISPs) are in operation. Roughly half the world's ISPs currently are based in North America and the rest are distributed throughout the world.

top

A DEFINITION FOR THE INTERNET

The authors feel strongly that efforts should be made at top policy levels to define the Internet. It is tempting to view it merely as a collection of networks and computers. However, as indicated earlier, the authors designed the Internet as an architecture that provided for both communications capabilities and information services. Governments are passing legislation pertaining to the Internet without ever specifying to what the law applies and to what it does not apply. In U.S. telecommunications law, distinctions are made between cable, satellite broadcast and common carrier services. These and many other distinctions all blur in the backdrop of the Internet. Should broadcast stations be viewed as Internet Service Providers when their programming is made available in the Internet environment? Is use of cellular telephones considered part of the Internet and if so under what conditions? This area is badly in need of clarification.

The authors believe the best definition currently in existence is that approved by the Federal Networking Council in 1995, http://www.fnc.gov and which is reproduced in the footnote below [xv] for ready reference. Of particular note is that it defines the Internet as a global information system, and included in the definition, is not only the underlying communications technology, but also higher-level protocols and end-user applications, the associated data structures and the means by which the information may be processed, manifested, or otherwise used. In many ways, this definition supports the characterization of the Internet as an “information superhighway.” Like the federal highway system, whose underpinnings include not only concrete lanes and on/off ramps, but also a supporting infrastructure both physical and informational, including signs, maps, regulations, and such related services and products as filling stations and gasoline, the Internet has its own layers of ingress and egress, and its own multi-tiered levels of service.

The FNC definition makes it clear that the Internet is a dynamic organism that can be looked at in myriad ways. It is a framework for numerous services and a medium for creativity and innovation. Most importantly, it can be expected to evolve.

top

WHO RUNS THE INTERNET

The Domain Name System

The Internet evolved as an experimental system during the 1970s and early 1980s. It then flourished after the TCP/IP protocols were made mandatory on the ARPANET and other networks in January 1983; these protocols thus became the standard for many other networks as well. Indeed, the Internet grew so rapidly that the existing mechanisms for associating the names of host computers (e.g. UCLA, USC-ISI) to Internet addresses (known as IP addresses) were about to be stretched beyond acceptable engineering limits. Most of the applications in the Internet referred to the target computers by name. These names had to be translated into Internet addresses before the lower level protocols could be activated to support the application. For a time, a group at SRI International in Menlo Park, CA, called the Network Information Center (NIC), maintained a simple, machine-readable list of names and associated Internet addresses which was made available on the net. Hosts on the Internet would simply copy this list, usually daily, so as to maintain a local copy of the table. This list was called the "host.txt" file (since it was simply a text file). The list served the function in the Internet that directory services (e.g. 411 or 703-555-1212) do in the US telephone system - the translation of a name into an address.

As the Internet grew, it became harder and harder for the NIC to keep the list current. Anticipating that this problem would only get worse as the network expanded, researchers at USC Information Sciences Institute launched an effort to design a more distributed way of providing this same information. The end result was the Domain Name System (DNS) [xvi] which allowed hundreds of thousands of "name servers" to maintain small portions of a global database of information associating IP addresses with the names of computers on the Internet.

The naming structure was hierarchical in character. For example, all host computers associated with educational institutions would have names like "stanford.edu" or "ucla.edu". Specific hosts would have names like "cs.ucla.edu" to refer to a computer in the computer science department of UCLA, for example. A special set of computers called "root servers" maintained information about the names and addresses of other servers that contained more detailed name/address associations. The designers of the DNS also developed seven generic "top level" domains, as follows:

Education - EDU
Government - GOV
Military - MIL
International - INT
Network - NET
(non-profit) Organization - ORG
Commercial - COM

Under this system, for example, the host name "UCLA" became "UCLA.EDU" because it was operated by an educational institution, while the host computer for "BBN" became "BBN.COM" because it was a commercial organization. Top-level domain names also were created for every country: United Kingdom names would end in “.UK,” while the ending “.FR” was created for the names of France.

The Domain Name System (DNS) was and continues to be a major element of the Internet architecture, which contributes to its scalability. It also contributes to controversy over trademarks and general rules for the creation and use of domain names, creation of new top-level domains and the like. At the same time, other resolution schemes exist as well. One of the authors (Kahn) has been involved in the development of a different kind of standard identification and resolution scheme [xvii] that, for example, is being used as the base technology by book publishers to identify books on the Internet by adapting various identification schemes for use in the Internet environment. For example, International Standard Book Numbers (ISBNs) can be used as part of the identifiers. The identifiers then resolve to state information about the referenced books, such as location information (e.g. multiple sites) on the Internet that is used to access the books or to order them. These developments are taking place in parallel with the more traditional means of managing Internet resources. They offer an alternative to the existing Domain Name System with enhanced functionality.

The growth of Web servers and users of the Web has been remarkable, but some people are confused about the relationship between the World Wide Web and the Internet. The Internet is the global information system that includes communication capabilities and many high level applications. The Web is one such application. The existing connectivity of the Internet made it possible for users and servers all over the world to participate in this activity. Electronic mail is another important application. As of today, over 60 million computers take part in the Internet and about 3.6 million web sites were estimated to be accessible on the net. Virtually every user of the net has access to electronic mail and web browsing capability. Email remains a critically important application for most users of the Internet, and these two functions largely dominate the use of the Internet for most users.

The Internet Standards Process

Internet standards were once the output of research activity sponsored by DARPA. The principal investigators on the internetting research effort essentially determined what technical features of the TCP/IP protocols would become common. The initial work in this area started with the joint effort of the two authors, continued in Cerf's group at Stanford, and soon thereafter was joined by engineers and scientists at BBN and University College London. This informal arrangement has changed with time and details can be found elsewhere [xviii]. At present, the standards efforts for Internet is carried out primarily under the auspices of the Internet Society (ISOC). The Internet Engineering Task Force (IETF) operates under the leadership of its Internet Engineering Steering Group (IESG), which is populated by appointees approved by the Internet Architecture Board (IAB) which is, itself, now part of the Internet Society.

The IETF comprises over one hundred working groups categorized and managed by Area Directors specializing in specific categories.

There are other bodies with considerable interest in Internet standards or in standards that must interwork with the Internet. Examples include the International Telecommunications Union Telecommunications standards group (ITU-T), the International Institute of Electrical and Electronic Engineers (IEEE) local area network standards group (IEEE 801), the Organization for International Standardization (ISO), the American National Standards Institute (ANSI), the World Wide Web Consortium (W3C), and many others.

As Internet access and services are provided by existing media such as telephone, cable and broadcast, interactions with standards bodies and legal structures formed to deal with these media will become an increasingly complex matter. The intertwining of interests is simultaneously fascinating and complicated, and has increased the need for thoughtful cooperation among many interested parties.

Managing the Internet

Perhaps the least understood aspect of the Internet is its management. In recent years, this subject has become the subject of intense commercial and international interest, involving multiple governments and commercial organizations, and recently congressional hearings. At issue is how the Internet will be managed in the future, and, in the process, what oversight mechanisms will insure that the public interest is adequately served.

In the 1970s, managing the Internet was easy. Since few people knew about the Internet, decisions about almost everything of real policy concern were made in the offices of DARPA. It became clear in the late 1970s, however, that more community involvement in the decision-making processes was essential. In 1979, DARPA formed the Internet Configuration Control Board (ICCB) to insure that knowledgeable members of the technical community discussed critical issues, educated people outside of DARPA about the issues, and helped others to implement the TCP/IP protocols and gateway functions. At the time, there were no companies that offered turnkey solutions to getting on the Internet. It would be another five years or so before companies like Cisco Systems were formed, and while there were no PCs yet, the only workstations available were specially built and their software was not generally configured for use with external networks; they were certainly considered expensive at the time.

In 1983, the small group of roughly twelve ICCB members was reconstituted (with some substitutions) as the Internet Activities Board (IAB), and about ten “Task Forces” were established under it to address issues in specific technical areas. The attendees at Internet Working Group meetings were invited to become members of as many of the task forces as they wished.

The management of the Domain Name System offers a kind of microcosm of issues now frequently associated with overall management of the Internet's operation and evolution. Someone had to take responsibility for overseeing the system's general operation. In particular, top-level domain names had to be selected, along with persons or organizations to manage each of them. Rules for the allocation of Internet addresses had to be established. DARPA had previously asked the late Jon Postel of the USC Information Sciences Institute to take on numerous functions related to administration of names, addresses and protocol related matters. With time, Postel assumed further responsibilities in this general area on his own, and DARPA, which was supporting the effort, gave its tacit approval. This activity was generally referred to as the Internet Assigned Numbers Authority (IANA) [xix]. In time, Postel became the arbitrator of all controversial matters concerning names and addresses until his untimely death in October 1998.

It is helpful to consider separately the problem of managing the domain name space and the Internet address space. These two vital elements of the Internet architecture have rather different characteristics that color the management problems they generate. Domain names have semantics that numbers may not imply; and thus a means of determining who can use what names is needed. As a result, speculators on Internet names often claim large numbers of them without intent to use them other than to resell them later. Alternate resolution mechanisms [xx], if widely adopted, could significantly change the landscape here.

The rapid growth of the Internet has triggered the design of a new and larger address space (the so-called IP version 6 address space); today's Internet uses IP version 4 [xxi]. However, little momentum has yet developed to deploy IPv6 widely. Despite concerns to the contrary, the IPv4 address space will not be depleted for some time. Further, the use of Dynamic Host Configuration Protocol (DHCP) to dynamically assign IP addresses has also cut down on demand for dedicated IP addresses. Nevertheless, there is growing recognition in the Internet technical community that expansion of the address space is needed, as is the development of transition schemes that allow interoperation between IPv4 and IPv6 while migrating to IPv6.

In 1998, the Internet Corporation for Assigned Names and Numbers (ICANN) was formed as a private sector, non-profit, organization to oversee the orderly progression in use of Internet names and numbers, as well as certain protocol related matters that required oversight. The birth of this organization, which was selected by the Department of Commerce for this function, has been difficult, embodying as it does many of the inherent conflicts in resolving discrepancies in this arena. However, there is a clear need for an oversight mechanism for Internet domain names and numbers, separate from their day-to-day management.

Many questions about Internet management remain. They may also prove difficult to resolve quickly. Of specific concern is what role the U.S. government and indeed governments around the world need to play in its continuing operation and evolution. This is clearly a subject for another time.

top

WHERE DO WE GO FROM HERE?

As we struggle to envision what may be commonplace on the Internet in a decade, we are confronted with the challenge of imagining new ways of doing old things, as well as trying to think of new things that will be enabled by the Internet, and by the technologies of the future.

In the next ten years, the Internet is expected to be enormously bigger than it is today. It will be more pervasive than the older technologies and penetrate more homes than television and radio programming. Computer chips are now being built that implement the TCP/IP protocols and recently a university announced a two-chip web server. Chips like this are extremely small and cost very little. And they can be put into anything. Many of the devices connected to the Internet will be Internet-enabled appliances (cell phones, fax machines, household appliances, hand-held organizers, digital cameras, etc.) as well as traditional laptop and desktop computers. Information access will be directed to digital objects of all kinds and services that help to create them or make use of them [xxii].

Very high-speed networking has also been developing at a steady pace. From the original 50,000 bit-per-second ARPANET, to the 155 million bit-per-second NSFNET, to today’s 2.4 – 9.6 billion bit-per-second commercial networks, we routinely see commercial offerings providing Internet access at increasing speeds. Experimentation with optical technology using wavelength division multiplexing is underway in many quarters; and testbeds operating at speeds of terabits per second (that is trillions of bits-per-second) are being constructed.

Some of these ultra-high speed systems may one-day carry data from very far away places, like Mars. Already, design of the interplanetary Internet as a logical extension of the current Internet, is part of the NASA Mars mission program now underway at the Jet Propulsion Laboratory in Pasadena, California [xxiii]. By 2008, we should have a well functioning Earth-Mars network that serves as a nascent backbone of the interplanetary Internet.

Wireless communication has exploded in recent years with the rapid growth of cellular telephony. Increasingly, however, Internet access is becoming available over these networks. Alternate forms for wireless communication, including both ground radio and satellite are in development and use now, and the prospects for increasing data rates look promising. Recent developments in high data rate systems appear likely to offer ubiquitous wireless data services in the 1-2 Mbps range. It is even possible that wireless Internet access may one day be the primary way most people get access to the Internet.

A developing trend that seems likely to continue in the future is an information centric view of the Internet that can live in parallel with the current communications centric view. Many of the concerns about intellectual property protection are difficult to deal with, not because of fundamental limits in the law, but rather by technological and perhaps management limitations in knowing how best to deal with these issues. A digital object infrastructure that makes information objects “first-class citizens” in the packetized “primordial soup” of the Internet is one step in that direction. In this scheme, the digital object is the conceptual elemental unit in the information view; it is interpretable (in principle) by all participating information systems. The digital object is thus an abstraction that may be implemented in various ways by different systems. It is a critical building block for interoperable and heterogeneous information systems. Each digital object has a unique and, if desired, persistent identifier that will allow it to be managed over time. This approach is highly relevant to the development of third-party value added information services in the Internet environment.

Of special concern to the authors is the need to understand and manage the downside potential for network disruptions, as well as cybercrime and terrorism. The ability to deal with problems in this diverse arena is at the forefront of maintaining a viable global information infrastructure. “ IOPS.org” [xxiv] – a private-sector group dedicated to improving coordination among ISPs - deals with issues of ISP outages, disruptions, other trouble conditions, as well as related matters, by discussion, interaction and coordination between and among the principal players. Business, the academic community and government all need as much assurance as possible that they can conduct their activities on the Internet with high confidence that security and reliability will be present. The participation of many organizations around the world, including especially governments and the relevant service providers will be essential here.

The success of the Internet in society as a whole will depend less on technology than on the larger economic and social concerns that are at the heart of every major advance. The Internet is no exception, except that its potential and reach are perhaps as broad as any that have come before.

top


[i] Leonard Kleinrock's dissertation thesis at MIT was written during 1961: "Information Flow in Large Communication Nets", RLE Quarterly Progress Report, July 1961 and published as a book "Communication Nets: Stochastic Message Flow and Delay", New York: McGraw Hill, 1964. This was one of the earliest mathematical analyses of what we now call packet switching networks.

[ii] J.C.R. Licklider & W. Clark, "On-Line Man Computer Communication", August 1962. Licklider made tongue-in-cheek references to an "inter-galactic network" but in truth, his vision of what might be possible was prophetic.

[iii] [BARAN 64] Baran, P., et al, "On Distributed Communications", Volumes I-XI, RAND Corporation Research Documents, August 1964. Paul Baran explored the use of digital "message block" switching to support highly resilient, survivable voice communications for military command and control. This work was undertaken at RAND Corporation for the US Air Force beginning in 1962.

[iv] L. Roberts & T. Merrill, "Toward a Cooperative Network of Time-Shared Computers", Fall AFIPS Conf., Oct. 1966.

[v] Davies, D.W., K.A. Bartlett, R.A. Scantlebury, and P. T. Wilkinson. 1967. "A Digital Communication Network for Computers Giving Rapid Response at Remote Terminals," Proceedings of the ACM Symposium on Operating System Principles. Association for Computing Machinery, New York, 1967. Donald W. Davies and his colleagues coined the term "packet" and built one node of a packet switching network at the National Physical Laboratory in the UK.

[vi] Barry M. Leiner, Vinton G. Cerf, David D. Clark,Robert E. Kahn, Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, Stephen Wolff, "A Brief History of the Internet," www.isoc.org/internet/history/brief.html and see below for timeline

[vii] Vinton G. Cerf and Robert E. Kahn, "A Protocol for Packet Network Intercommunication," IEEE Transactions on Communications, Vol. COM-22, May 1974.

[viii] The Internet Engineering Task Force (IETF) is an activity taking place under the auspices of the Internet Society (www.isoc.org). See www.ietf.org

[ix] From the BITNET charter:

BITNET, which originated in 1981 with a link between CUNY and Yale, grew rapidly during the next few years, with management and systems services provided on a volunteer basis largely from CUNY and Yale. In 1984, the BITNET Directors established an Executive Committee to provide policy guidance.

(see http://www.geocities.com/SiliconValley/2260/bitchart.html)

[x] Usenet came into being in late 1979, shortly after the release of V7 Unix with UUCP. Two Duke University grad students in North Carolina, Tom Truscott and Jim Ellis, thought of hooking computers together to exchange information with the Unix community. Steve Bellovin, a grad student at the University of North Carolina, put together the first version of the news software using shell scripts and installed it on the first two sites: "unc" and "duke." At the beginning of 1980 the network consisted of those two sites and "phs" (another machine at Duke), and was described at the January Usenix conference. Steve Bellovin later rewrote the scripts into C programs, but they were never released beyond "unc" and "duke." Shortly thereafter, Steve Daniel did another implementation in C for public distribution. Tom Truscott made further modifications, and this became the "A" news release.

(see http://www.ou.edu/research/electron/internet/use-soft.htm)

[xi] A few examples include the New York State Education and Research Network (NYSERNET), New England Academic and Research Network (NEARNET), the California Education and Research Foundation Network (CERFNET), Northwest Net (NWNET), Southern Universities Research and Academic Net (SURANET) and so on. UUNET was formed as a non-profit by a grant from the UNIX Users Group (USENIX).

[xii] UUNET called its Internet service ALTERNET. UUNET was acquired by Metropolitan Fiber Networks (MFS) in 1995 which was itself acquired by Worldcom in 1996. Worldcom later merged with MCI to form MCI WorldCom in 1998. In that same year, Worldcom also acquired the ANS backbone network from AOL, which had purchased it from the non-profit ANS earlier.

[xiii] PSINET was a for-profit spun out of the NYSERNET in 1990.

[xiv] CERFNET was started by General Atomics as one of the NSF-sponsored intermediate level networks. It was coincidental that the network was called "CERF"Net - originally they had planned to call themselves SURFNET, since General Atomics was located in San Diego, California, but this name was already taken by a Dutch Research organization called SURF, so the General Atomics founders settled for California Education and Research Foundation Network. Cerf participated in the launch of the network in July 1989 by breaking a fake bottle of champagne filled with glitter over a Cisco Systems router.

[xv] October 24, 1995, Resolution of the U.S. Federal Networking Council

RESOLUTION:

"The Federal Networking Council (FNC) agrees that the following language reflects our definition of the term "Internet".

"Internet" refers to the global information system that --

(i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent extensions/follow-ons;

(ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-compatible protocols; and

(iii) provides, uses or makes accessible, either publicly or privately, high level services layered on the communications and related infrastructure described herein."

[xvi] The Domain Name System was designed by Paul Mockapetris and initially documented in November 1983. Mockapetris, P., "Domain names - Concepts and Facilities", RFC 882, USC/Information Sciences Institute, November 1983 and Mockapetris, P.,"Domain names - Implementation and Specification", RFC 883, USC/Information Sciences Institute, November 1983. (see also http://soa.granitecanyon.com/faq.shtml)

[xvii] The Handle System - see www.handle.net

[xviii] See Leiner, et al, "A Brief History…", www.isoc.org/internet/history/brief.html

[xix] See www.iana.org for more details. See also www.icann.org.

[xx] see www.doi.org

[xxi] Version 5 of the Internet Protocol was an experiment which has since been terminated

[xxii] see A Framework for Distributed Digital Object Services, Robert E Kahn and Robert Wilensky at www.cnri.reston.va.us/cstr/arch/k-w.html

[xxiii] The interplanetary Internet effort is funded in part by DARPA and has support from NASA. For more information, see www.ipnsig.org

[xxiv] See www.iops.org for more information on this group dedicated to improving operational coordination among Internet Service Providers.

top

What is Internet (wikipedia)

Internet

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Visualization of the various routes through a portion of the Internet.
Visualization of the various routes through a portion of the Internet.

The Internet is the worldwide, publicly accessible network of interconnected computer networks that transmit data by packet switching using the standard Internet Protocol (IP). It is a "network of networks" that consists of millions of smaller domestic, academic, business, and government networks, which together carry various information and services, such as electronic mail, online chat, file transfer, and the interlinked Web pages and other documents of the World Wide Web.

Contents

[hide]

Terminology: Internet vs. Web

The Internet and the World Wide Web are not synonymous: the Internet is a collection of interconnected computer networks, linked by copper wires, fiber-optic cables, wireless connections, etc.; the Web is a collection of interconnected documents and other resources, linked by hyperlinks and URLs. The World Wide Web is accessible via the Internet, as are many other services including e-mail, file sharing, and others described below.

The best way to define and distinguish between these terms is with reference to the Internet protocol suite. This collection of standards and protocols is organized into layers such that each layer provides the foundation and the services required by the layer above. In this conception, the term Internet refers to computers and networks that communicate using IP (Internet protocol) and TCP (transfer control protocol). Once this networking structure is established, then other protocols can run “on top.” These other protocols are sometimes called services or applications. Hypertext transfer protocol, or HTTP, is the application layer protocol that links and provides access to the files, documents and other resources of the World Wide Web.

Creation of the Internet

For more details on this topic, see History of the Internet.
The neutrality or factuality of this article or section may be compromised by weasel words.
You can help Wikipedia by improving weasel-worded statements
.

The USSR's launch of Sputnik spurred the United States to create the Advanced Research Projects Agency (ARPA, later known as the Defense Advanced Research Projects Agency, or DARPA) in February 1958 to regain a technological lead. ARPA created the Information Processing Technology Office (IPTO) to further the research of the Semi Automatic Ground Environment (SAGE) program, which had networked country-wide radar systems together for the first time. J. C. R. Licklider was selected to head the IPTO, and saw universal networking as a potential unifying human revolution.

In 1950, Licklider moved from the Psycho-Acoustic Laboratory at Harvard University to MIT where he served on a committee that established MIT Lincoln Laboratory. He worked on the SAGE project. In 1957 he became a Vice President at BBN, where he bought the first production PDP-1 computer and conducted the first public demonstration of time-sharing.

Licklider recruited Lawrence Roberts to head a project to implement a network, and Roberts based the technology on the work of Paul Baran who had written an exhaustive study for the U.S. Air Force that recommended packet switching (as opposed to Circuit switching) to make a network highly robust and survivable. After much work, the first node went live at UCLA on October 29, 1969 on what would be called the ARPANET, one of the "eve" networks of today's Internet. Following on from this, the British Post Office, Western Union International and Tymnet collaborated to create the first international packet switched network, referred to as the International Packet Switched Service (IPSS), in 1978. This network grew from Europe and the US to cover Canada, Hong Kong and Australia by 1981.

The first TCP/IP wide area network was operational by 1 January 1983, when the United States' National Science Foundation (NSF) constructed a university network backbone that would later become the NSFNet. (This date is held by some to be technically that of the birth of the Internet.) It was then followed by the opening of the network to commercial interests in 1985. Important, separate networks that offered gateways into, then later merged with, the NSFNet include Usenet, BITNET and the various commercial and educational X.25 Compuserve and JANET. Telenet (later called Sprintnet), was a large privately-funded national computer network with free dialup access in cities throughout the U.S. that had been in operation since the 1970s. This network eventually merged with the others in the 1990s as the TCP/IP protocol became increasingly popular. The ability of TCP/IP to work over these pre-existing communication networks, especially the international X.25 IPSS network, allowed for a great ease of growth. Use of the term "Internet" to describe a single global TCP/IP network originated around this time.

The network gained a public face in the 1990s. On August 6, 1991 CERN, which straddles the border between France and Switzerland publicized the new World Wide Web project, two years after Tim Berners-Lee had begun creating HTML, HTTP and the first few Web pages at CERN.

An early popular Web browser was ViolaWWW based upon HyperCard. It was eventually replaced in popularity by the Mosaic Web Browser. In 1993 the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign released version 1.0 of Mosaic and by late 1994 there was growing public interest in the previously academic/technical Internet. By 1996 the word "Internet" was coming into common daily usage, frequently misused to refer to the World Wide Web.

Meanwhile, over the course of the decade, the Internet successfully accommodated the majority of previously existing public computer networks (although some networks such as FidoNet have remained separate). This growth is often attributed to the lack of central administration, which allows organic growth of the network, as well as the non-proprietary open nature of the Internet protocols, which encourages vendor interoperability and prevents any one company from exerting too much control over the network.

Today's Internet

A rack of servers.
A rack of servers.

Aside from the complex physical connections that make up its infrastructure, the Internet is facilitated by bi- or multi-lateral commercial contracts (e.g., peering agreements), and by technical specifications or protocols that describe how to exchange data over the network. Indeed, the Internet is essentially defined by its interconnections and routing policies.

As of March 10, 2007, 1.114 billion people use the Internet according to Internet World Stats.

Internet protocols

For more details on this topic, see Internet Protocols.

In this context, there are three layers of protocols:

  • At the lowest level is IP (Internet Protocol), which defines the datagrams or packets that carry blocks of data from one node to another. The vast majority of today's Internet uses version four of the IP protocol (i.e. IPv4), and although IPv6 is standardized, it exists only as "islands" of connectivity, and there are many ISPs who don't have any IPv6 connectivity at all. [1]
  • Next come TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) - the protocols by which one host sends data to another. The former makes a virtual 'connection', which gives some level of guarantee of reliability. The latter is a best-effort, connectionless transport, in which data packets that are lost in transit will not be re-sent.
  • On top comes the application protocol. This defines the specific messages and data formats sent and understood by the applications running at each end of the communication.

Internet structure

There have been many analyses of the Internet and its structure. For example, it has been determined that the Internet IP routing structure and hypertext links of the World Wide Web are examples of scale-free networks.

Similar to the way the commercial Internet providers connect via Internet exchange points, research networks tend to interconnect into large subnetworks such as:

These in turn are built around relatively smaller networks. See also the list of academic computer network organizations

In network schematic diagrams, the Internet is often represented by a cloud symbol, into and out of which network communications can pass.

ICANN

For more details on this topic, see ICANN.

The Internet Corporation for Assigned Names and Numbers (ICANN) is the authority that coordinates the assignment of unique identifiers on the Internet, including domain names, Internet Protocol (IP) addresses, and protocol port and parameter numbers. A globally unified namespace (i.e., a system of names in which there is one and only one holder of each name) is essential for the Internet to function. ICANN is headquartered in Marina del Rey, California, but is overseen by an international board of directors drawn from across the Internet technical, business, academic, and non-commercial communities. The US government continues to have the primary role in approving changes to the root zone file that lies at the heart of the domain name system. Because the Internet is a distributed network comprising many voluntarily interconnected networks, the Internet, as such, has no governing body. ICANN's role in coordinating the assignment of unique identifiers distinguishes it as perhaps the only central coordinating body on the global Internet, but the scope of its authority extends only to the Internet's systems of domain names, IP addresses, and protocol port and parameter numbers.

On Nov. 16, 2005, the World Summit on the Information Society, held in Tunis, established the Internet Governance Forum (IGF) to discuss Internet-related issues.

Language

For more details on this topic, see English on the Internet.

The prevalent language for communication on the Internet is English. This may be a result of the Internet's origins, as well as English's role as the lingua franca. It may also be related to the poor capability of early computers to handle characters other than those in the basic Latin alphabet.

Further information: Unicode

After English (30% of Web visitors) the most-requested languages on the World Wide Web are Chinese 14%, Japanese 8%, Spanish 8%, German 5%, and French 5% (from Internet World Stats, updated January 11, 2007).

By continent, 36% of the world's Internet users are based in Asia, 29% in Europe, and 21% in North America ([2] updated January 11, 2007).

The Internet's technologies have developed enough in recent years that good facilities are available for development and communication in most widely used languages. However, some glitches such as mojibake (incorrect display of foreign language characters, also known as krakozyabry) still remain.

Internet and the workplace

The Internet is allowing greater flexibility in working hours and location, especially with the spread of unmetered high-speed connections and Web applications.

The mobile Internet

The Internet can now be accessed virtually anywhere by numerous means. Mobile phones, datacards, and cellular routers allow users to connect to the Internet from anywhere there is a cellular network supporting that device's technology.

Common uses of the Internet

E-mail

For more details on this topic, see E-mail.

The concept of sending electronic text messages between parties in a way analogous to mailing letters or memos predates the creation of the Internet. Even today it can be important to distinguish between Internet and internal e-mail systems. Internet e-mail may travel and be stored unencrypted on many other machines and networks out of both the sender's and the recipient's control. During this time it is quite possible for the content to be read and even tampered with by third parties, if anyone considers it important enough. Purely internal or intranet mail systems, where the information never leaves the corporate or organization's network and servers, is much more secure, although in any organization there will be IT and other personnel whose job may involve monitoring, or at least occasionally accessing, the email of other employees not addressed to them. Web-based email (webmail) between parties on the same webmail system may not actually 'go' anywhere—it merely sits on the one server and is tagged in various ways so as to appear in one person's 'sent items' list and in one or more others' 'in boxes' or other 'folders' when viewed.

E-mail attachments have greatly increased the usefulness of e-mail in many ways. When a file is attached to an email, a text representation of the attached data (which may itself be binary data) is actually appended to the e-mail text, later to be reconstituted into a 'file' on the recipient's machine for their use. See MIME (Multipurpose Internet Mail Extensions) for details of how the problems involved in doing this have been overcome.

The World Wide Web

For more details on this topic, see World Wide Web.
Graphic representation of a very small part of the WWW, representing some of the hyperlinks
Graphic representation of a very small part of the WWW, representing some of the hyperlinks

Through keyword-driven Internet research using search engines, like Google, millions worldwide have easy, instant access to a vast and diverse amount of online information. Compared to encyclopedias and traditional libraries, the World Wide Web has enabled a sudden and extreme decentralization of information and data.

Many individuals and some companies and groups have adopted the use of "Web logs" or blogs, which are largely used as easily-updatable online diaries. Some commercial organizations encourage staff to fill them with advice on their areas of specialization in the hope that visitors will be impressed by the expert knowledge and free information, and be attracted to the corporation as a result. One example of this practice is Microsoft, whose product developers publish their personal blogs in order to pique the public's interest in their work.

For more information on the distinction between the World Wide Web and the Internet itself — as in everyday use the two are sometimes confused — see Dark internet where this is discussed in more detail.

Remote access

The Internet allows computer users to connect to other computers and information stores easily, wherever they may be across the world. They may do this with or without the use of security, authentication and encryption technologies, depending on the requirements.

This is encouraging new ways of working from home, collaboration and information sharing in many industries. An accountant sitting at home can audit the books of a company based in another country, on a server situated in a third country that is remotely maintained by IT specialists in a fourth. These accounts could have been created by home-working book-keepers, in other remote locations, based on information e-mailed to them from offices all over the world. Some of these things were possible before the widespread use of the Internet, but the cost of private, leased lines would have made many of them infeasible in practice.

An office worker away from his desk, perhaps the other side of the world on a business trip or a holiday, can open a remote desktop session into his normal office PC using a secure Virtual Private Network (VPN) connection via the Internet. This gives him complete access to all his normal files and data, including e-mail and other applications, while he is away.

This concept is also referred to by some network security people as the Virtual Private Nightmare, because it extends the secure perimeter of a corporate network into its employees' homes; this has been the source of some notable security breaches, but also provides security for the workers.

Collaboration

See also: Collaborative software

The low-cost and nearly instantaneous sharing of ideas, knowledge, and skills has made collaborative work dramatically easier. Not only can a group cheaply communicate and test, but the wide reach of the Internet allows such groups to easily form in the first place, even among niche interests. An example of this is the free software movement in software development which produced GNU and Linux from scratch and has taken over development of Mozilla and OpenOffice.org (formerly known as Netscape Communicator and StarOffice).

Internet 'chat', whether in the form of IRC 'chat rooms' or channels, or via instant messaging systems allow colleagues to stay in touch in a very convenient way when working at their computers during the day. Messages can be sent and viewed even more quickly and conveniently than via e-mail. Extension to these systems may allow files to be exchanged, 'whiteboard' drawings to be shared as well as voice and video contact between team members.

Version control systems allow collaborating teams to work on shared sets of documents without either accidentally overwriting each other's work or having members wait until they get 'sent' documents to be able to add their thoughts and changes.

File sharing

For more details on this topic, see File sharing.

A computer file can be e-mailed to customers, colleagues and friends as an attachment. It can be uploaded to a Web site or FTP server for easy download by others. It can be put into a "shared location" or onto a file server for instant use by colleagues. The load of bulk downloads to many users can be eased by the use of "mirror" servers or peer-to-peer networks. In any of these cases, access to the file may be controlled by user authentication; the transit of the file over the Internet may be obscured by encryption and money may change hands before or after access to the file is given. The price can be paid by the remote charging of funds from, for example a credit card whose details are also passed - hopefully fully encrypted - across the Internet. The origin and authenticity of the file received may be checked by digital signatures or by MD5 or other message digests.

These simple features of the Internet, over a world-wide basis, are changing the basis for the production, sale, and distribution of anything that can be reduced to a computer file for transmission. This includes all manner of office documents, publications, software products, music, photography, video, animations, graphics and the other arts. This in turn is causing seismic shifts in each of the existing industry associations, such as the RIAA and MPAA in the United States, that previously controlled the production and distribution of these products in that country.

Streaming media

Many existing radio and television broadcasters provide Internet 'feeds' of their live audio and video streams (for example, the BBC). They may also allow time-shift viewing or listening such as Preview, Classic Clips and Listen Again features. These providers have been joined by a range of pure Internet 'broadcasters' who never had on-air licenses. This means that an Internet-connected device, such as a computer or something more specific, can be used to access on-line media in much the same way as was previously possible only with a TV or radio receiver. The range of material is much wider, from pornography to highly specialized technical Web-casts. Podcasting is a variation on this theme, where—usually audio—material is first downloaded in full and then may be played back on a computer or shifted to a digital audio player to be listened to on the move. These techniques using simple equipment allow anybody, with little censorship or licensing control, to broadcast audio-visual material on a worldwide basis.

Webcams can be seen as an even lower-budget extension of this phenomenon. While some webcams can give full frame rate video, the picture is usually either small or updates slowly. Internet users can watch animals around an African waterhole, ships in the Panama Canal, the traffic at a local roundabout or their own premises, live and in real time. Video chat rooms, video conferencing, and remote controllable webcams are also popular. Many uses can be found for personal webcams in and around the home, with and without two-way sound.

Voice telephony (VoIP)

For more details on this topic, see VoIP.

VoIP stands for Voice over IP, where IP refers to the Internet Protocol that underlies all Internet communication. This phenomenon began as an optional two-way voice extension to some of the Instant Messaging systems that took off around the year 2000. In recent years many VoIP systems have become as easy to use and as convenient as a normal telephone. The benefit is that, as the Internet carries the actual voice traffic, VoIP can be free or cost much less than a normal telephone call, especially over long distances and especially for those with always-on ADSL or DSL Internet connections.

Thus VoIP is maturing into a viable alternative to traditional telephones. Interoperability between different providers has improved and the ability to call or receive a call from a traditional telephone is available. Simple inexpensive VoIP modems are now available that eliminate the need for a PC.

Voice quality can still vary from call to call but is often equal to and can even exceed that of traditional calls.

Remaining problems for VoIP include emergency telephone number dialing and reliability. Currently a few VoIP providers provide some 911 dialing but it is not universally available. Traditional phones are line powered and operate during a power failure, VoIP does not do so without a backup power source for the electronics.

Most VoIP providers offer unlimited national calling but the direction in VoIP is clearly toward global coverage with unlimited minutes for a low monthly fee.

VoIP has also become increasingly popular within the gaming world, as a form of communication between players. Popular gaming VoIP clients include Ventrilo and Teamspeak, and there are others available also.

Censorship

For more details on this topic, see Internet censorship.

Some governments, such as those of Iran, the People's Republic of China and Cuba restrict what people in their countries can access on the Internet, especially political and religious content. This is accomplished through software that filters domains and content so that they may not be easily accessed or obtained without elaborate circumvention.

In Norway, Finland and Sweden, major Internet service providers have voluntarily (possibly to avoid such an arrangement being turned into law) agreed to restrict access to sites listed by police. While this list of forbidden URL's is only supposed to contain addresses of known child pornography sites, content of the list is secret.

Many countries have enacted laws making the possession or distribution of certain material, such as child pornography, illegal, but do not use filtering software.

There are many free and commercially available software programs with which a user can choose to block offensive Web sites on individual computers or networks, such as to limit a child's access to pornography or violence. See Content-control software.

Internet access

For more details on this topic, see Internet access.
Wikibooks
Wikibooks has more about this subject:

Common methods of home access include dial-up, landline broadband (over coaxial cable, fibre optic or copper wires), Wi-Fi, satellite and cell phones.

Public places to use the Internet include libraries and Internet cafes, where computers with Internet connections are available. There are also Internet access points in many public places such as airport halls and coffee shops, in some cases just for brief use while standing. Various terms are used, such as "public Internet kiosk", "public access terminal", and "Web payphone". Many hotels now also have public terminals, though these are usually fee based.

Wi-Fi provides wireless access to computer networks, and therefore can do so to the Internet itself. Hotspots providing such access include Wi-Fi-cafes, where a would-be user needs to bring their own wireless-enabled devices such as a laptop or PDA. These services may be free to all, free to customers only, or fee-based. A hotspot need not be limited to a confined location. The whole campus or park, or even the entire city can be enabled. Grassroots efforts have led to wireless community networks. Commercial WiFi services covering large city areas are in place in London, Vienna, San Francisco, Philadelphia, Chicago, Pittsburgh and other cities, including Toronto by the end of 2006. The Internet can then be accessed from such places as a park bench.[1]

Apart from Wi-Fi, there have been experiments with proprietary mobile wireless networks like Ricochet, various high-speed data services over cellular phone networks, and fixed wireless services.

High-end mobile phones such as smartphones generally come with Internet access through the phone network. Web browsers such as Opera are available on these advanced handsets, which can also run a wide variety of other Internet software. More mobile phones have Internet access than PCs, though this is not as widely used. An internet access provider and protocol matrix differentiates the methods used to get online.

Leisure

The Internet has been a major source of leisure since before the World Wide Web, with entertaining social experiments such as MUDs and MOOs being conducted on university servers, and humor-related Usenet groups receiving much of the main traffic. Today, many Internet forums have sections devoted to games and funny videos; short cartoons in the form of Flash movies are also popular. Over 6 million people use blogs or message boards as a means of communication and for the sharing of ideas.

The pornography and gambling industries have both taken full advantage of the World Wide Web, and often provide a significant source of advertising revenue for other Web sites. Although many governments have attempted to put restrictions on both industries' use of the Internet, this has generally failed to stop their widespread popularity. A song in the Broadway musical show Avenue Q is titled "The Internet is for Porn" and refers to the popularity of this aspect of the internet.

One main area of leisure on the Internet is multiplayer gaming. This form of leisure creates communities, bringing people of all ages and origins to enjoy the fast-paced world of multiplayer games. These range from MMORPG to first-person shooters, from role-playing games to online gambling. This has revolutionized the way many people interact and spend their free time on the Internet.

While online gaming has been around since the 1970s, modern modes of online gaming began with services such as GameSpy and MPlayer, which players of games would typically subscribe to. Non-subscribers were limited to certain types of gameplay or certain games.

Many use the Internet to access and download music, movies and other works for their enjoyment and relaxation. As discussed above, there are paid and unpaid sources for all of these, using centralized servers and distributed peer-to-peer technologies. Discretion is needed as some of these sources take more care over the original artists' rights and over copyright laws than others.

Many use the World Wide Web to access news, weather and sports reports, to plan and book holidays and to find out more about their random ideas and casual interests.

People use chat, messaging and email to make and stay in touch with friends worldwide, sometimes in the same way as some previously had pen pals. Social networking Web sites like Friends Reunited and many others like them also put and keep people in contact for their enjoyment.

The Internet has seen a growing amount of Internet operating systems, where users can access their files, folders, and settings via the Internet. An example of an opensource webos is Eyeos.

Cyberslacking has become a serious drain on corporate resources; the average UK employee spends 57 minutes a day surfing the Web at work, according to a study by Peninsula Business Services[3].

Complex architecture

Many computer scientists see the Internet as a "prime example of a large-scale, highly engineered, yet highly complex system".[2] The Internet is extremely heterogeneous. (For instance, data transfer rates and physical characteristics of connections vary widely.) The Internet exhibits "emergent phenomena" that depend on its large-scale organization. For example, data transfer rates exhibit temporal self-similarity. Further adding to the complexity of the Internet is the ability of more than one computer to use the Internet through only one node, thus creating the possibility for a very deep and hierarchal based sub-network that can theoretically be extended infinitely (disregarding the programmatic limitations of the IPv4 protocol).

Marketing

The Internet has also become a large market for companies; some of the biggest companies today have grown by taking advantage of the efficient nature of low-cost advertising and commerce through the Internet; also known as e-commerce. It is the fastest way to spread information to a vast amount of people simultaneously. The Internet has also subsequently revolutionized shopping—for example; a person can order a CD online and receive it in the mail within a couple of days, or download it directly in some cases. The Internet has also greatly facilitated personalized marketing which allows a company to market a product to a specific person or a specific group of people more so than any other advertising medium.

Examples of personalized marketing include online communities such as MySpace, Friendster, Orkut, and others which thousands of Internet users join to advertise themselves and make friends online. Many of these users are young teens and adolescents ranging from 13 to 25 years old. In turn, when they advertise themselves they advertise interests and hobbies, which online marketing companies can use as information as to what those users will purchase online, and advertise their own companies' products to those users.

A very ineffective way of advertising on the Internet is through spamming an email with advertisements.[original research?] This is ineffective because, now, most email providers offer protection against email spam. Most spam messages are sent automatically to everybody in the email database of the company/person that is spamming. This way of advertising is almost like using adware.

Adware is another ineffective way of advertising because most people simply close a popup window when it shows up, not bothering to read it.[original research?]

Further information: Disintermediation#Impact of Internet-related disintermediation upon various industries and Travel agency#The Internet threat

The name Internet

For more details on this topic, see Internet capitalization conventions.
Look up Internet, internet in Wiktionary, the free dictionary.

Internet is traditionally written with a capital first letter, as it is a proper noun. The Internet Society, the Internet Engineering Task Force, the Internet Corporation for Assigned Names and Numbers, the World Wide Web Consortium, and several other Internet-related organizations use this convention in their publications.

Many newspapers, newswires, periodicals, and technical journals capitalize the term (Internet). Examples include the New York Times, the Associated Press, Time, The Times of India, Hindustan Times, and Communications of the ACM.

Others assert that the first letter should be written in lower case (internet). A significant number of publications use this form, including The Economist, the Canadian Broadcasting Corporation, the Financial Times, The Guardian, The Times, and The Sydney Morning Herald. As of 2005, many publications using internet appear to be located outside of North America—although one U.S. news source, Wired News, has adopted the lower case spelling.

Historically, Internet and internet have had different meanings, with internet being a contraction of internetwork or internetworking and Internet referring to a matrix of networks using TCP/IP (Transmission Controll Protocol/ Internet Protocol) according to the book Where wizards stay up late. Under this distinction, the Internet is a particular internet, but the reverse does not apply. The distinction was evident in many RFCs, books, and articles from the 1980s and early 1990s (some of which, such as RFC 1918, refer to "internets" in the plural), but has recently fallen into disuse.[citation needed] Instead, the term intranet is generally used for private networks. See also: extranet.

Some people use the lower-case term as a medium (like radio or newspaper, e.g. I've found it in internet), and capitalised (or first letter capitalised) as the global network.

Significant Internet events

Malfunctions and attacks

See also

Find more information on Internet by searching Wikipedia's sister projects
 Dictionary definitions from Wiktionary
 Textbooks from Wikibooks
 Quotations from Wikiquote
 Source texts from Wikisource
 Images and media from Commons
 News stories from Wikinews
 Learning resources from Wikiversity
Main lists: List of basic internet topics and List of Internet topics

Major aspects and issues

Functions

Underlying infrastructure

Regulatory bodies

References

Citations and notes

  1. ^ "Toronto Hydro to Install Wireless Network in Downtown Toronto". Bloomberg.com. Retrieved 19-Mar-2006.
  2. ^ Walter Willinger, Ramesh Govindan, Sugih Jamin, Vern Paxson, and Scott Shenker. (2002). Scaling phenomena in the Internet. In Proceedings of the National Academy of Sciences, 99, suppl. 1, 2573 – 2580.

General

  • Living Internet — Internet history and related information, including information from many creators of the Internet.
  • First Monday peer-reviewed journal on the Internet.

External links

Wikibooks
Wikibooks has a book on the topic of

General

Articles

History